Capabilities of EMOA to Detect and Preserve Equivalent Pareto Subsets
نویسندگان
چکیده
Recent works in evolutionary multiobjective optimization suggest to shift the focus from solely evaluating optimization success in the objective space to also taking the decision space into account. They indicate that this may be a) necessary to express the users requirements of obtaining distinct solutions (distinct Pareto set parts or subsets) of similar quality (comparable locations on the Pareto front) in real-world applications, and b) a demanding task for the currently most commonly used algorithms. We investigate if standard EMOA are able to detect and preserve equivalent Pareto subsets and develop an own special purpose EMOA that meets these requirements reliably.
منابع مشابه
A Clustering-Based Niching Framework for the Approximation of Equivalent Pareto-Subsets
In many optimization problems in practice, multiple objectives have to be optimized at the same time. Some multi-objective problems are characterized by multiple connected Pareto-sets at different parts in decision space – also called equivalent Pareto-subsets. We assume that the practitioner wants to approximate all Pareto-subsets to be able to choose among various solutions with different cha...
متن کاملEffects of 1-Greedy -Metric-Selection on Innumerably Large Pareto Fronts
Evolutionary multi-objective algorithms (EMOA) using performance indicators for the selection of individuals have turned out to be a successful technique for multi-objective problems. Especially, the selection based on the S-metric, as implemented in the SMS-EMOA, seems to be effective. A special feature of this EMOA is the greedy (μ+ 1) selection. Based on a pathological example for a populati...
متن کاملA Parallel Version of SMS-EMOA for Many-Objective Optimization Problems
In the last decade, there has been a growing interest in multiobjective evolutionary algorithms that use performance indicators to guide the search. A simple and effective one is the S-Metric Selection Evolutionary Multi-Objective Algorithm (SMS-EMOA), which is based on the hypervolume indicator. Even though the maximization of the hypervolume is equivalent to achieving Pareto optimality, its c...
متن کاملDesign und Management komplexer technischer Prozesse und Systeme mit Methoden der Computational Intelligence Pareto Set and EMOA Bahavior for Simple Multimodal Multiobjective Functions
Recent research on evolutionary multiobjective optimization has mainly focused on Pareto-fronts. However, we state that proper behavior of the utilized algorithms in decision/search space is necessary for obtaining good results if multimodal objective functions are concerned. Therefore, it makes sense to observe the development of Pareto-sets as well. We do so on a simple, configurable problem,...
متن کاملDesign und Management komplexer technischer Prozesse und Systeme mit Methoden der Computational Intelligence Pareto Set and EMOA Behavior for Simple Multimodal Multiobjective Functions
Recent research on evolutionary multiobjective optimization has mainly focused on Pareto-fronts. However, we state that proper behavior of the utilized algorithms in decision/search space is necessary for obtaining good results if multimodal objective functions are concerned. Therefore, it makes sense to observe the development of Pareto-sets as well. We do so on a simple, configurable problem,...
متن کامل